Erosionsgefährdung (C-Faktor) durch Sonderkulturen

Karl Auerswald und Max Kainz

Zusammenfassung

Schlüsselworte: Bodenerosion, Sonderkulturen, Flächenstillegung, Allgemeine Bodenabtragssgleichung, C-Faktor

Summary

Because of the increasing importance of set-aside areas and the production of industrial plants (renewable raw materials), special crops are increasingly cultivated for which an erosion assessment was not possible up to now because the C factors of the Universal Soil Loss Equation were lacking. For these crops, for some legume crops and for special production systems of conventional crops, soil loss ratios were established for the first time. This enables to calibrate C factors for a wide variety of crops and management practices. The C factors of rotations consisting of one third of these special crops and two thirds of small grain range within common rotations. An exception are onions which pose a very high erosion risk due to their poor canopy development and cucumbers because of the coverage of the soil with foil. The cultivation of industrial plants will hence not change the erosion extent. The introduction of set-aside years in conventional rotations leads to C factors similar of small grain rotations. Both forms of non-food land-use will therefore not improve the erosion status in contrast to different forms of long-term set-aside. The cultivation of Miscanthus is also only recommended for a long-term (> 10 years) use, because the high erosion risk during the slow plant development in the first years can only be compensated by the good protection in the following years if the cultivation is maintained long enough.

Key words: soil erosion, industrial crops, set-aside, universal soil loss equation, C factor

1. Einleitung

Zu den wichtigsten ökologischen Schäden, die durch die gegenwärtige Landbewirtschaftung ausgeübt werden, zählt die Bodenerosion und deren Folgewirkungen, wie z. B. die Gewässereutrophierung. Beispielsweise wird in Bayern auf mehr als 60 % der Ackerfläche der tolerierbare Bodenabtrag überschritten [1]. Die Landwirtschaft trägt mit 31 % zu den Gesamt-P-Einträgen und damit zur Eutrophierung der Oberflächengewässer in Deutschland bei [2]. Für Sonderkulturen und neue Kulturpflanzen ist daher zu prüfen, ob sie gegenüber üblichen Feldfrüchten im langjährigen Mittel den Bodenabtrag senken oder heben.

2. Das Wesen des C-Faktors

Sowohl die erosionsauslösende Kraft des Regens, die sog. Regenerosivität, als auch der Schutz durch die Kulturpflanze, der dieser Kult entgegen wirkt, weisen einen ausgeprägten Jahresgang auf. Das Maß für die Erosionsgefährdung verschiedener Kulturen unter sonst gleichen Bedingungen, der C-Faktor, ergibt sich daher aus dem Faltungssintegral beider Jahresgänge.
Die Kulturpflanzenentwicklung wird zur einfachen Berechnung in 6 Perioden eingeteilt (Tab. 1). Die erosionsmindernde Wirkung wird im Relativen Bodenabtrag (RBA) angegeben, der Anteil der Jahresregenerosivität, der in dieser Periode fällt, im Relativen R-Anteil (RAA). Im Mittel einer Fruchtfolge mit n Kulturen berechnet sich dann der C-Faktor aus [4]:

\[
C = \frac{\sum_{i=1}^{n} RBA_i \cdot RAA_i}{n}
\]

(1)

Die Berechnung erfolgt über eine gesamte Fruchtfolge, da die Zeit zwischen der Ernte und der Ausaat der Folgekultur nicht eindeutig zugeordnet werden kann und z. T. erheblich zur Erosionsgefährdung beiträgt.

\[
RBA = c_1 \cdot c_2 \cdot c_3
\]

(2)

Dabei ist \(c_1 \) die Wirkung der Kulturpflanzenbearbeitung selbst. Diese Wirkung ergibt sich aus der Bedeckung, die durch die Periode festgelegt ist, und einer in [6] dargestellten Gleichung. \(c_2 \) ist die Wirkung einer Bedeckung durch Mulch, z. B. Ernterückstände oder niedrig wachsende Unkräuter. Bei konventioneller Bewirtschaftung ist diese Bedeckung außer in der Periode E-BB sehr gering (<5%) und \(c_2 \) daher nahe 1. Mit \(c_3 \) werden Wirkungen im Boden, z. B. auf die Aggregationsstabilität, quantifiziert. Dieser Subfaktor beträgt i. d. R. 0.8 [8].

Da die Subfaktoren \(c_2 \) und \(c_3 \) bei konventionellem Anbau kaum variieren und \(c_1 \) durch die Periode selbst festgelegt ist, unterscheiden sich die RBAs verschiedener Feldfrüchte relativ wenig. Zum Beispiel wurden in [3] alle Sommer- und Wintergetreidearten und Körnerreis zusammengefaßt, weil die RBAs einer Periode bei diesen verschiedenen Feldfrüchten sich nicht unterscheiden ließen. In Anbetracht der geringen Flächenanteile der verschiedenen Sonderkulturen ist es daher angemessen, deren RBAs nach Gleichung 2 abzuschätzen. Damit lassen sich dann die C-Faktoren vonbeliebigen Sonderkulturfruchtfolgen berechnen.

Für Sonderkulturen existieren keine gängigen Fruchtfolgen. Um die verschiedenen Kulturen dennoch bewerten zu können, wurden aus den RBAs C-Faktoren für dreifeldrige Fruchtfolgen berechnet, wobei neben der jeweiligen Sonderkultur zwei Jahre Getreide vorgesehen wurden. Dies wird häufig nicht der Fall sein, erleichtert aber den Vergleich der Sonderkulturen untereinander und mit anderen dreifeldrigen Fruchtfolgen. Für die Kulturpflanzenentwicklung wurden Erfahrungswerte verwendet. Auf Grund der wenig standardisierten Anbauverfahren ist hier eine große Variabilität gegeben. Soll die Erosionsprognose dem Einzelfall gerecht werden, empfiehlt sich daher, die Perioden für diesen Fall festzulegen und mit den hier dargestellten RBAs den C-Faktor einzelfallspezifisch zu berechnen. Dies wird in den meisten Fällen schon aufgrund der Abweichungen von der hier ange nommenen dreifeldrigen Fruchtfolge notwendig sein und ist mit den nun vorliegenden RBAs leicht möglich. Außerdem ist aufgrund der klimatisch bedingten (kühle Mittelgebirgstage, begünstigte Beckenlagen) Variabilität der Kulturpflanzenentwicklung eine spezifische Berechnung notwendig.

3. Ergebnisse

Wie wegen der Einteilung der RBAs nach der Kultur-
<table>
<thead>
<tr>
<th>Kultur</th>
<th>Periode</th>
<th>SB-10</th>
<th>10-50</th>
<th>50-75</th>
<th>75-E</th>
<th>E-BB</th>
<th>Anbauform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotationsbrache</td>
<td>32</td>
<td>65</td>
<td>45</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Amaranth</td>
<td>32</td>
<td>94</td>
<td>45</td>
<td>10</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Buchweizen</td>
<td>32</td>
<td>44</td>
<td>35</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Calendula</td>
<td>32</td>
<td>85</td>
<td>45</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Erbsbe</td>
<td>32</td>
<td>50</td>
<td>40</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>Saatgutgewinnung; ohne Walzen</td>
</tr>
<tr>
<td>Euphorbia</td>
<td>32</td>
<td>94</td>
<td>45</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>Saatgutgewinnung; mit Walzen</td>
</tr>
<tr>
<td>Fenchel</td>
<td>32</td>
<td>85</td>
<td>40</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Flachs</td>
<td>32</td>
<td>50</td>
<td>40</td>
<td>10</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Geibe Rüben</td>
<td>32</td>
<td>90</td>
<td>50</td>
<td>10</td>
<td>7</td>
<td>55</td>
<td>Dammanbau</td>
</tr>
<tr>
<td>Gerbrüde</td>
<td>32</td>
<td>45</td>
<td>38</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Minimalbodenbearbeitung</td>
</tr>
<tr>
<td>...</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>nach Körnermäss ohne Pflug</td>
</tr>
<tr>
<td>...</td>
<td>45</td>
<td>60</td>
<td>42</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>nach Wurzelrüchten</td>
</tr>
<tr>
<td>Gurken</td>
<td>32</td>
<td>120</td>
<td>70</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>Folienanbau</td>
</tr>
<tr>
<td>Hanf</td>
<td>32</td>
<td>50</td>
<td>40</td>
<td>4</td>
<td>1</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Hirse</td>
<td>32</td>
<td>85</td>
<td>42</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>Risper/Kölben</td>
</tr>
<tr>
<td>Kartoffel</td>
<td>32</td>
<td>80</td>
<td>40</td>
<td>5</td>
<td>7,5</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>20</td>
<td>35</td>
<td>19</td>
<td>4</td>
<td>6</td>
<td>44</td>
<td>Mulchsaat, nicht wendend</td>
</tr>
<tr>
<td>...</td>
<td>12</td>
<td>70</td>
<td>40</td>
<td>5</td>
<td>7</td>
<td>44</td>
<td>in Getreidestoppel</td>
</tr>
<tr>
<td>Koriander</td>
<td>32</td>
<td>50</td>
<td>40</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Leindotter</td>
<td>32</td>
<td>46</td>
<td>38</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lupinen</td>
<td>32</td>
<td>85</td>
<td>45</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>8</td>
<td>11</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>Mulchsaat</td>
</tr>
<tr>
<td>Mais</td>
<td>32</td>
<td>94</td>
<td>45</td>
<td>12</td>
<td>8,5</td>
<td>44 (1)</td>
<td>jeweils Silomais (Körnermaiss in Kammern)</td>
</tr>
<tr>
<td>...</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>10 (1)</td>
<td>Minimalbodenbearbeitung</td>
</tr>
<tr>
<td>...</td>
<td>32</td>
<td>54</td>
<td>45</td>
<td>12</td>
<td>8,5</td>
<td>44 (1)</td>
<td>mit Spurlockerung</td>
</tr>
<tr>
<td>...</td>
<td>32</td>
<td>36</td>
<td>21</td>
<td>12</td>
<td>8,5</td>
<td>44 (1)</td>
<td>mit Wintergerste in Reihen</td>
</tr>
<tr>
<td>...</td>
<td>20</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>10 (1)</td>
<td>Mulchsaat</td>
</tr>
<tr>
<td>...</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>10 (1)</td>
<td>Mulchsaat, nicht-wendend</td>
</tr>
<tr>
<td>Ölcranbe</td>
<td>32</td>
<td>46</td>
<td>38</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Ökörbis</td>
<td>32</td>
<td>94</td>
<td>40</td>
<td>6</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Ölein</td>
<td>32</td>
<td>50</td>
<td>40</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Petersilie</td>
<td>32</td>
<td>90</td>
<td>45</td>
<td>5</td>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Raps</td>
<td>32</td>
<td>46</td>
<td>38</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Rotationsbrache</td>
<td>32</td>
<td>58</td>
<td>40</td>
<td>1</td>
<td>0,4</td>
<td>entf. Ansaat Frühjahr</td>
<td></td>
</tr>
<tr>
<td>Saflor</td>
<td>32</td>
<td>46</td>
<td>38</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Schafmohn</td>
<td>32</td>
<td>85</td>
<td>45</td>
<td>5</td>
<td>3</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Senf</td>
<td>32</td>
<td>44</td>
<td>35</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sojabohne</td>
<td>32</td>
<td>85</td>
<td>45</td>
<td>5</td>
<td>7</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Sonnenblumen</td>
<td>32</td>
<td>87</td>
<td>35</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>2,5</td>
<td>3</td>
<td>2</td>
<td>Mulchsaat</td>
</tr>
<tr>
<td>Sudangras</td>
<td>32</td>
<td>90</td>
<td>40</td>
<td>10</td>
<td>5</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Topinambur</td>
<td>32</td>
<td>80</td>
<td>40</td>
<td>10</td>
<td>8,5</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Wicke</td>
<td>32</td>
<td>50</td>
<td>40</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>Saatgutgewinnung</td>
</tr>
<tr>
<td>Zichorie</td>
<td>32</td>
<td>94</td>
<td>45</td>
<td>8</td>
<td>8,5</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Zuckerhirse</td>
<td>32</td>
<td>94</td>
<td>45</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Zuckerrübe</td>
<td>32</td>
<td>85</td>
<td>45</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>12</td>
<td>15</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td>nicht-wendend in Getreidestoppel</td>
</tr>
<tr>
<td>...</td>
<td>20</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>Mulchsaat</td>
</tr>
<tr>
<td>...</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>Mulchsaat, nicht-wendend</td>
</tr>
<tr>
<td>Zwiebel</td>
<td>32</td>
<td>98</td>
<td>50</td>
<td>entf.</td>
<td>entf.</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

pflanzenentwicklung schon zu erwarten war, unterscheiden sich die RBAs zwischen den verschiedenen Feldfrüchten innerhalb einer Periode relativ wenig. In den frühen Perioden (v.a. SB-10) weisen Anbauformen, die zu einer höheren Mulchbedeutung führen (Minimalbodenbearbeitung, nichtwendende Bodenbearbei-
tung, Mulchsait), niedrigere RBAs auf. Kulturen mit weitem Reihenabstand und langsamer Jugendentwicklung dagegen etwas höher. Bei Gurken im Folienanbau kann wegen des häufiger zu erwartenen Oberflächenabflusses sogar mit Bodenabträgen gerechnet werden, die höher als 100% (= langjährige Schwarzbrache) sind, wie dies auch für Folienmais bekannt ist [5]. In späteren Perioden, insbesondere in 75-E, haben hochwachsende Kulturen und solche, die am Ende ihrer Entwicklung keine vollständige Bodenbedeckung erreichen, höhere RBAs. Extrem in dieser Hinsicht sind Zwiebeln, die kaum Bedeckungen über 50% erreichen und für die daher keine RBAs für die Perioden 50–75 und 75–E ausgewiesen sind. Der Zwiebelanbau stellt damit eine extrem erosionsfördernde Nutzung dar.

Im Gegensatz zu den RBAs der übrigen Perioden streuen die RBAs der Periode E-BB stark und auch innerhalb einer Kultur, was durch unterschiedliche Ernteverfahren, Witterungsverhältnisse während der Ernte (z.B. Bodenverdichtung und Strukturzerstörung bei hoher Bodenfeuchtigkeit) und Flächenbehandlungen (Grubbern, Gründungseinsaat) bedingt ist. Allerdings gleichen sich manche Einflüsse (z.B. Witterung) im langjährigen Mittel aus und die Periode trägt meist wenig zum C-Faktor bei (häufig um 5%), so daß diese Unsicherheit die C-Faktor-Berechnung nicht wesentlich beeinträchtigt.

Mit Hilfe der RBAs aus Tab. 2 wurden C-Faktoren für Sonderkulturfruchtfolgen errechnet (Tab. 3). Sie gel-

<table>
<thead>
<tr>
<th>Fruchtfolge</th>
<th>C-Faktor</th>
<th>Fruchtfolge</th>
<th>C-Faktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ackerbohne-GT-GT</td>
<td>0,09</td>
<td>Ölühren-GT-GT</td>
<td>0,14</td>
</tr>
<tr>
<td>Amananth-GT-GT</td>
<td>0,15</td>
<td>Ölühren-GT-GT</td>
<td>0,09</td>
</tr>
<tr>
<td>Buchweizen-GT-GT</td>
<td>0,07</td>
<td>Petersilie-GT-GT</td>
<td>0,13</td>
</tr>
<tr>
<td>Celendula-GT-GT</td>
<td>0,11</td>
<td>Raps-GT-GT</td>
<td>0,08</td>
</tr>
<tr>
<td>Erbe-GT-GT</td>
<td>0,09</td>
<td>Sauer-GT-GT</td>
<td>0,07</td>
</tr>
<tr>
<td>Euphorbia-GT-GT</td>
<td>0,14</td>
<td>Schlafmohn-GT-GT</td>
<td>0,11</td>
</tr>
<tr>
<td>Fenchel-GT-GT</td>
<td>0,18</td>
<td>SENT-GT-GT</td>
<td>0,07</td>
</tr>
<tr>
<td>Flachs-GT-GT</td>
<td>0,08</td>
<td>Silomais-GT-GT</td>
<td>0,16</td>
</tr>
<tr>
<td>Gelbe Rüben-GT-GT</td>
<td>0,16</td>
<td>Sejaborhne-GT-GT</td>
<td>0,11</td>
</tr>
<tr>
<td>GT-GT-GT</td>
<td>0,07</td>
<td>Sonnenblumen-GT-GT</td>
<td>0,12</td>
</tr>
<tr>
<td>Gurken-GT-GT</td>
<td>0,21</td>
<td>Sudangras</td>
<td>0,14</td>
</tr>
<tr>
<td>Hanf-GT-GT</td>
<td>0,08</td>
<td>Topinambur-GT-GT</td>
<td>0,07</td>
</tr>
<tr>
<td>Hirse-GT-GT</td>
<td>0,10</td>
<td>Wicke-GT-GT</td>
<td>0,11</td>
</tr>
<tr>
<td>Kartoffel-GT-GT</td>
<td>0,12</td>
<td>Zichorie-GT-GT</td>
<td>0,16</td>
</tr>
<tr>
<td>Koriander-GT-GT</td>
<td>0,10</td>
<td>Zuckerhirse-GT-GT</td>
<td>0,16</td>
</tr>
<tr>
<td>Leindotter-GT-GT</td>
<td>0,07</td>
<td>Zuckerrübe-GT-GT</td>
<td>0,12</td>
</tr>
<tr>
<td>Lupine-GT-GT</td>
<td>0,12</td>
<td>Sommerzwiebel-GT-GT</td>
<td>0,21</td>
</tr>
<tr>
<td>Ölrambe-GT-GT</td>
<td>0,07</td>
<td>Winterzwiebel-GT-GT</td>
<td>0,26</td>
</tr>
</tbody>
</table>

Table 3: C factors for rotations with one year of a certain crop followed by two years of small grain (GT); rotations with conventional crops are shown in Italics.
ten für mittlere Verhältnisse, wobei Abweichungen von bis zu 20% nach oben und unten auftreten können, wie dies auch für die C-Faktoren von Fruchtfolgen üblicher Feldfrüchte gilt. Wann höhere oder niedrigere C-Faktoren anzusetzen sind, ist in [7] dargelegt.

Die C-Faktoren liegen im Bereich von Fruchtfolgen mit üblichen Feldfrüchten. Dieses relativ enge Spektrum der C-Faktoren ist schon dadurch bedingt, daß die Sonderkulturen nur ein Drittel der Fruchtfolge einnehmen. Die höheren C-Faktoren treten bei Fruchtfolgen mit Kulturen mit später Saat, weiterem Reihenstand und langsamer Entwicklung auf (Fenchel, Gurken, Ölkürbis, Sudan-gras, Zichorie, Zuckerhirse, Zwiebel). Die niedrigen C-Faktoren, die im Bereich reiner Getreidefruchtfolgen liegen, treten dagegen bei Fruchtfolgen mit niedrigen, schnell wachsenden, eng gesäten Sonderkulturen auf.

Sonderkulturen verändern damit die Erosionssituation bei dreigliedrigen Fruchtfolgen mit zwei Drittel Getreide nicht wesentlich, im Gegensatz zu besonderen Anbauverfahren wie der Minimum-bodenbearbeitung oder der Mulchsaat, die den Bodenabtrag wesentlich senken. Auch die Rotationsbrache, die im Unterschied zu nachwachsenden Rohstoffen keinen ökonomischen Nutzen hat, liegt im Bereich von Getreide und verbessert damit den Erosionsschutz kaum. Im Gegensatz dazu stehen Formen der Dauerbrache wie selbstbegrünte oder angesäte Brachen (Abb. 1). Im Laufe ihrer Entwicklung sinkt die Erosionsgefährdung, da sich der Boden stabilisiert und die Mulch- und Pflanzenbedeckung zunimmt, wobei bei der ange- säteten Brache die Einbringung der Pflanzen im ersten Jahr noch eine gewisse Bodengefährdung bedeutet.

Aber bereits mit mehr als zweijähriger Dauer dieser Bracheformen wird der Erosionsschutz wesentlich besser als bei der Rotationsbrache. Hinzu kommt, daß mit Dauerbrachen gezielt stelle, besonders erosionsge- fährdete Flächen aus der Nutzung genommen werden können, was mit der Rotationsbrache nicht möglich ist.

Ähnlich wie bei der Dauerbrache sinkt beim Anbau von Miscanthus als nachwachsendem Rohstoff der C-Faktor mit der Nutzungsdauer. Im ersten Jahr liegt der C-Faktor auf Grund der langsamen Entwicklung, bei der kaum mehr als 50% Bodenbedeckung erreicht wird, noch extrem hoch (0,86). Auch im zweiten Jahr ist die Erosionsgefährdung noch beträchtlich (0,19). Obwohl in späteren Jahren ein sehr guter Erosions- schutz gegeben ist (ca. 0,01), muß daher der Anbau von Miscanthus mindestens über 10 Jahre aufrecht erhal- ten werden, bis die hohe Erosionsgefährdung der ersten Jahre kompensiert ist und der mittlere C-Faktor im Bereich üblicher Fruchtfolgen liegt. Ab einem mehr als 15-jährigen, kontinuierlichen Anbau ohne Neu- pflanzung ist dann ein über Getreide hinausgehender Schutz zu erwarten.

Danksagung:
Die Arbeiten wurden teilweise im Rahmen des Forschungsverbundes Agrarökosysteme München vom Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie gefördert (Förder-Nr.: BMBF 0339370).

Literaturangaben

Anschriften der Verfasser:
Priv. Doz. Dr. Karl Auerwald, Lehrstuhl für Bodenkunde. TU München-Weihenstephan D-85350 Freising Tel.: (0 81 61) 71 38 15 Fax: (0 81 61) 71 44 66 E-mail: auerwald@pollux.dev.agrar.tu-muenchen.de
Dipl. Ing. Max Rainz, Forschungsverbund Agrarökosysteme München Priehof 1, D-85298 Schweyen Tel.: (0 84 41) 809 20 Fax: (0 84 41) 809 92 92 E-mail: rainz@fam20.edavagrar.tu-muenchen.de